Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body.

نویسنده

  • T Ratiu
چکیده

The classical Euler-Poisson equations describing the motion of a heavy rigid body about a fixed point are generalized to arbitrary Lie algebras as Hamiltonian systems on coad-joint orbits of a tangent bundle Lie group. the N-dimensional Lagrange and symmetric heavy top are thereby shown to be completely integrable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

m at h . N A ] 1 7 Se p 19 99 DISCRETE EULER - POINCARÉ AND LIE - POISSON EQUATIONS

In this paper, discrete analogues of Euler-Poincaré and Lie-Poisson reduction theory are developed for systems on finite dimensional Lie groups G with Lagrangians L : TG → R that are G-invariant. These discrete equations provide “reduced” numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G...

متن کامل

Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

متن کامل

Geometry and Control of Three-Wave Interactions

The integrable structure of the three-wave equations is discussed in the setting of geometric mechanics. Lie-Poisson structures with quadratic Hamiltonian are associated with the three-wave equations through the Lie algebras su(3) and su(2, 1). A second structure having cubic Hamiltonian is shown to be compatible. The analogy between this system and the rigid-body or Euler equations is discusse...

متن کامل

The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories

We study Euler–Poincaré systems (i.e., the Lagrangian analogue of LiePoisson Hamiltonian systems) defined on semidirect product Lie algebras. We first give a derivation of the Euler–Poincaré equations for a parameter dependent Lagrangian by using a variational principle of Lagrange d’Alembert type. Then we derive an abstract Kelvin-Noether theorem for these equations. We also explore their rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 1981